[关键词]
[摘要]
针对迭代傅里叶算法(IFT)在对稀疏阵列天线优化时,阵元不分区域地大规模截断带来的不利影响,介绍了一种分区IFT算法。根据满阵幅度锥削分布计算每个分区域需要的激励阵元数,在算法的截断过程中,对每个分区中按照所需的阵元数对激励幅度较大的阵元进行截断,从而使阵元的密度分布更加接近于满阵的幅度分布,更容易获得相对较低的副瓣电平。将其应用于圆形孔径平面稀疏阵列天线的优化布阵,以抑制阵列天线的峰值副瓣电平为目的,仿真试验表明分区IFT算法可以得到比标准IFT算法更优的结果。
[Key word]
[Abstract]
A sub-regional Iterative Fourier Technique is presented in this paper for the disadvantage of non-regional numerous elements are truncated in standard IFT in thinned arrays synthesis. Array thinning is chose by setting the amplitudes of a proposed number in each ring of relative high excitations to unity and the others to zero during each iteration cycle. The requisite number of turn on elements in each region is determined by the summation amplitude of full array in the array aperture. Then the sub-regional IFT is applied to improve the circle array antenna performance by thinning process. The simulated results show that the performance of the planar array was more excellence comparing with using standard IFT.
[中图分类号]
TN820.1
[基金项目]
国家自然科学基金