2018, 40(10):38-44.
摘要:
主要利用检测前跟踪动态规划(DP-TBD)算法解决目标跟踪问题。动态规划(DP)是一种先通过对量测空间栅格化处理,然后对离散的量测空间中所有可能的物理路径进行遍历的算法。但是该算法提供的是一种未经滤波的点迹序列。此外,基于单雷达的DP-TBD算法在信噪比(SNR)较低时跟踪效果不佳,航迹丢失情况较严重,因此利用基于DP-TBD的多雷达协同探测势在必行。然而,由于DP-TBD算法没有状态误差协方差矩阵,导致无法将不同雷达的点迹序列进行基于各种融合准则的融合。另外,由于多个雷达不同的采样周期和通信时延,导致了各个雷达的数据是异步的。为了解决以上问题,文中提出了一种基于DP-TBD的分布式异步粒子滤波融合算法(DP-PFF)。该算法分为两步,第一步提出了一种适用于DP算法的粒子滤波方法;第二步是将不同雷达获得的异步状态估计转化为同步的并进行基于DCI准则的分布式融合。仿真结果说明,和单雷达相比,该算法显著提升了目标跟踪的性能。同时,该算法也减少了航迹丢失率并且可以显著提升系统的鲁棒性。