2009, 31(5).
摘要:
在复杂的目标识别问题中,高维数的待识别数据往往存在较大的数值差异,导致神经网络分类器学习速度变慢甚至不收敛,因此需要对数据进行归一化处理.文中以回弹后向传播算法在目标识别中的应用为背景,系统深入地研究了BP算法网络输入数据归一化方法,详细讨论了6种归一化方法的特点和应用范围.使用4类目标的仿真数据、5类飞机的暗室测量数据和UCIdata数据库的部分数据集进行实验,以数据未经归一化时作参考,分析比较了这6种归一化方法对网络学习性能的影响.结果表明:归一化能消除不同特征分量间的数值大小差异,改善网络的学习性能