2014(2):35-41.
摘要:
针对无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法与全球定位系统/惯性导航系统(Global Positioning System/Inertial Navigation System,GPS/INS)组合导航模型不匹配,且鲁棒性不足,难以适应INS 元件的随机性和突变性的问题,提出了一种UKF改进算法。该算法有效结合了混合滤波思想、平方根滤波技术及交互式多模型结构,分别克服了算法与线性/非线性模型不匹配,协方差矩阵非正定以及参数设置难以适应模型不确定性的问题。仿真实验分别考察了新算法在INS平台角初始大误差及加速度计零偏突变两种情况下的表现。实验表明,新算法在估计精度及鲁棒性方面比UKF有较大提高,能够有效校正INS元件产生的随机和突变误差。