2016(9):50-56.
摘要:
针对传统粒子滤波(PF)没有引入当前信息,并存在粒子退化的问题,提出了一种基于序列二次规划(SQP)多级优化的PF 算法。首先,基于残差分布特性采用置信区间剔除较大偏差粒子,调整粒子权值分布;然后,将重采样后的粒子映射到集合U,根据集合U 中各粒子复制次数建立多级优化模型,通过SQP 求解模型的参数值,当前后两级模型优化参数差异小于门限时,输出最后一级优化参数为滤波结果;最后,为防止过度采样导致粒子退化,利用滤波值及其协方差采样新粒子。仿真实验表明:SQP鄄PF 算法在跟踪精度,粒子多样性方面优于传统PF 算法。