2019, 41(1):36-41.
摘要:
在目标跟踪中,为了克服粒子滤波的粒子退化和贫化问题,提高滤波精度,文中将差分演化算法与容积粒子滤波相结合,形成了差分演化容积粒子滤波算法。在粒子进行先验更新时, 使用容积卡尔曼滤波算法融入当前时刻的量测信息并用其来产生重要性密度函数,并且在重采样阶段,用差分演化算法对根据重要性密度函数抽取的采样粒子做优化操作,从而克服粒子滤波存在的粒子退化及贫化问题,提高滤波性能。实验结果表明,和粒子滤波、无迹粒子滤波、容积粒子滤波相比,该算法有着更高的滤波精度和更好的稳定性,并且能够提高雷达机动目标跟踪的精确性。